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ABSTRACT. Longitudinal or repeated measures data with clumping at zero occur in many 

applications in biometrics, including health policy research, epidemiology, nutrition, and 

meteorology. These data exhibit correlation because they are measured on the same subject 

over time or because subjects may be considered repeated measures within a larger unit 

such as a family. They present special challenges because of the extreme non-normality of 

the distributions involved. A model for repeated measures data with clumping at zero, using 

a mixed-effects mixed-distribution model with correlated random effects, is presented. The 

model contains components to model the probability of a non-zero value and the mean of 

non-zero values, allowing for repeated measurements using random effects and allowing 

for correlation between the two components. Methods for describing the effect of predictor 

variables on the probability of non-zero values, on the mean of non-zero values, and on the 

overall mean amount are given. This interpretation also applies to the mixed-distribution 

model for cross-sectional data. The proposed methods are illustrated with analyses of 

effects of several covariates on medical expenditures in 1996 for subjects clustered within 

households using data from the Medical Expenditure Panel Survey. 
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1 Introduction 

Data with clumping at zero commonly occur in biometrics. Typically the outcome variable 

measures an amount that must be non-negative and may in some cases be zero. The positive 

values are generally skewed, often extremely so. Examples include concentrations of 

compounds, amounts of health or insurance expenditures, or amounts of rainfall or 

pollutants. Distributions of data of this type follow a common form: there is a spike or 

discrete probability mass at zero, followed by a bump or ramp describing positive values. 

Since the variable of interest describes an amount there is often interest in estimating the 

mean amount, including zeros, perhaps in order to estimate total amounts. For example, in 

estimating mean per person medical expenditures, it must be taken into account that some 

subjects will have no expenditures during the period of interest. From these means, group 

totals could be estimated. 

Various approaches to the problem of data clumped at zero have been proposed, however, 

most of them have drawbacks1. If the data are treated as if they come from a normal 

distribution, the clumping at zero is ignored as well as the tendency of the positive data to 

be skewed. If a nonparametric approach utilizing the distribution of the ranks is employed, 

a large number of ties will exist corresponding to the zero observations, and the distribution 

will not be symmetric. In addition, it is not possible to obtain predictions of the response 

variable or to estimate totals using a nonparametric approach. Another approach to 

analyzing data of this type is to divide the data into two parts – those data with a value 

equal to zero and those greater than zero. If only the data greater than zero are used in the 

analysis, important information about subjects with zero response is lost, and estimates of 
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totals will not include zero values. When one is relying on estimates from such analyses to 

make policy decisions, inaccurate conclusions may be made, which may lead to policies 

that are inadequate or inappropriate for the population of interest. In addition, this method 

does not account for the relationship that may exist between the probability of a non-zero 

response and the level of the non-zero response. 

The majority of the literature in the area of data that are clumped at zero addresses the 

cross-sectional case where the unit of observation is measured once1-4. Clumping at zero 

may also occur with repeated measures or longitudinal data. In addition to sharing the 

problems of cross-sectional data with clumping at zero, the correlation among 

measurements on the same unit of observation must be accounted for.  

We propose a mixed-distribution model based on the work of Lachenbruch1,2 for cross-

sectional data and Grunwald and Jones5 for time series data. The model is also similar to 

the “two-part model” used for cross-sectional data in econometrics3,6. All of these 

approaches combine models for the probability of occurrence of a non-zero value (a probit 

or logit model) and for the probability distribution of the non-zero values (a log-normal or 

exponential family distribution). The term “mixed-distribution model” refers to a mixture-

of-distributions model that takes the general form 

[ ]
Pr( 0) if 0

( ) 1 Pr( 0) ( ) if 0
0 i

Y y
f y Y h y y

y

 = == − = < f 0
>    (1) 
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where  is a probability density defined when ( )h y 0y> 1,2. We draw on methods for 

modeling non-normal responses with random effects7 to incorporate random unit (subject) 

effects into the two parts of the model to account for the correlation due to multiple 

observations made on the same subject or unit. We also allow the random unit effects for 

the probability of a non-zero value and for the distribution of non-zero values to be 

correlated with each other. This allows units with higher rates of occurrence to also have 

higher (or lower) mean non-zero responses. Correlation between the random effects in the 

two model components is similar to the cross-sectional correlation between the random 

normal errors in the two model components of the Heckman, or Type II Tobit model8. 

Section 2 outlines the proposed mixed-distribution model for longitudinal data with 

correlated random effects, shows how the methods of generalized linear mixed models 

(GLMM) and nonlinear mixed models may be used to fit the model, and addresses the 

interpretation of the model parameters in terms of the total amount, including zeros. In 

particular, a covariate may affect the mean amount by affecting both the probability of 

occurrence of a non-zero value and also the mean of the non-zero values, and we give an 

approach to quantifying and separating these two effects. In Section 3 results from 

simulation studies are presented. Section 4 illustrates application of the mixed-distribution 

model for repeated measures data using data from the Medical Expenditure Panel Survey, 

and Section 5 provides a summary and discusses areas for further research. 

 
2 Mixed-distribution Model with Correlated Random Effects 

In this section a mixed-distribution model for repeated measures data with clumping at zero 

and correlated random effects is introduced. This model will be referred to as the correlated 
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mixed-distribution model. An extension of the mixed-distribution model was chosen to 

model repeated measures data because it provides a general statistical modeling approach 

using existing methodologies (generalized linear and nonlinear mixed-effects models). The 

model gives information about the separate occurrence and non-zero amount components 

of the model as well as the overall mean. The correlated mixed-distribution model relates 

the two components of the model by assuming a bivariate normal distribution for the 

random effects. 

 
2.1 Model 

For a random variable Y which represents the amount of a quantity with observed value  

for a unit of observation i  at time 

ij ijy

j , let  represent the occurrence variable where ijR

0 if 0
1 if 0

ij
ij

ij

Y
R

Y
 == >
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ijR has conditional probabilities 
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where is a vector of fixed occurrence effects 1 1 1iu
′ ′=   

θ β , 1β , and random unit occurrence 

effect . We assume a logistic model for occurrence so that 1iu

( )( )1 1 1logit ij ij i1p uX′= +θ β   (2)  
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)θ ,u
′ ′= 

θ β

where  is a vector of covariates for occurrence. 1ijX

Define  to be the intensity variable with p.d.f.  for  and 

mean  where is a vector of fixed intensity effects 

| 1ij ij ijS Y R≡ =

( ) (2 2E |
ijij sS µ=θ

2( | )ijf s θ 0ijs >

2 2 2i  2β  

and random unit intensity effect . We assume a lognormal model for intensity so that 2iu

)

2 


( ) ( 2
2 2 2 2log | ,ij ij i eS N uX σ′ +θ β∼   (3) 

where  is a vector of covariates for intensity. We allow the random effects for 

occurrence and intensity to be correlated by assuming that  

2ijX

2
1 1 1

2
2 1 2 2

0
,

0
i

i

u
BVN

u
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ρσ σ σ

                      
∼ .  (4) 

Under this assumption the subject-specific mean intensity is 

( ) ( 2

2 2 2 2 2E | exp e
ij ij iS X σ′= +θ β )u +   (5) 

and the marginal mean intensity is 

( ) ( 2 2
2

2 2 2 2 2E | exp e
ij ijS X σ σ′= +β β )+   (6) 

Note in particular that the values and interpretations of the fixed effects parameters 2β  are 
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identical in (5) and (6) except for the intercept7. 

The p.d.f. of is ijY

( ) ( )
1 0 1 2
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where  and  is a Dirac delta function1 2,
′ ′ ′=    

θ θ θ 0 ( )yδ 9 such that  
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The conditional expectation of Yij is: 

( ) ( ) ( )1E |
ijij ij SY p µ=θ θ ,  (7) 

and the conditional variance is10: 

( ) ( ) ( )( ) ( )( ) ( )21 2 1 1var( | ) var | 1
ijij ij ij ij ij SY p S p p µ = + −  θ θ θ θ θ θ . 

The contribution to the likelihood for the  subject  is ith ( 1, , )i m= …

1 2
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The likelihood is then 
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.(8)

In the correlated mixed-distribution model, it is not assumed that the random effects are 

independent and, as a result, the components of (8) for occurrence and intensity contain a 

common parameter, ρ. Therefore, the two components of the likelihood cannot be 

maximized separately as in Lachenbruch2 or Grunwald and Jones5. In model (8) it is also 

possible for 1  and β β  to share common parameters. However, because 1  and 2β β  are on 

different scales, doing so may lead to parameter estimates that are difficult to interpret. 

With the assumptions that u  are independent, i.e. that ρ , the likelihood may be 

factored into two parts that correspond to the occurrence process and the intensity process: 

1  and i 2iu
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The first component is the likelihood for the occurrence process, 1 1( ,RL σ )β , and the second 

component is the likelihood for the intensity process, 2 2S ( ,L σ σ, )eβ . With the further 

assumption that  has no parameters in common with ,  1θ 2θ L( )1 2 1 2, , , ,σ σ σeβ β

0ρ=

 is 

maximized when each component is maximized separately. When , the model is 

referred to as the uncorrelated mixed-distribution model.  
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2iu

1 1( , )RL σ

 
2.2 Model Fitting 

If u  are assumed to be independent, then maximum likelihood methods may be 

used to maximize both components of the likelihood separately. Wolfinger and O’Connell’s 

pseudo-likelihood approach

1  and i

11, Breslow and Clayton’s penalized quasi-likelihood 

approach12, or optimization of the likelihood approximated by adaptive Gaussian 

quadrature13, may be used to maximize β  and  separately. The 

overall likelihood ( 1 2 1 2, , , , eL σ σ σ )  is the product of 1 1( , )RL σβ  and , and 

the maximum of ( 1 2 1 2, , , , eL σ σ σ )β β  occurs when 1 1( , )σRL β  and 2 2( , , )S eσ σL β  are 

maximized separately. If the models contain no random effects, this allows the mixed-

distribution model to be estimated using standard software of Generalized Linear Models14. 

When correlated random effects are present these special cases are useful for obtaining 

initial estimates when optimizing the correlated model likelihood (8). 

2 2( , , )S eL σ σβ

2 2( , , )S eL σ σββ β

The full likelihood (8) for the correlated mixed-distribution model can be maximized using 

quasi-Newton optimization of a likelihood approximated by adaptive Gaussian 

quadrature13. This method is implemented in the SAS PROC NLMIXED procedure (SAS 

Institute, Cary, NC, Version 8). This procedure allows the user to specify a general 

likelihood, in particular one of the form (8), and also allows great flexibility for 

specification of the distribution of . We assume a logistic-lognormal-normal model, 

where “logistic” refers to the modeling of the occurrence part of the model (2), “lognormal” 

refers to the modeling of the intensity part of the model (3), and “normal” refers to the 

assumption that the random effects are assumed to have a bivariate normal distribution (4). 

ijS
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To fit this model we developed a SAS macro (MIXCORR, available from authors) that 

calls PROC GENMOD and PROC NLMIXED. The user must specify the dataset, the 

outcome variable, covariates for the binomial component of the model and for the 

lognormal component of the model, and the variable that identifies the random unit. The 

macro estimates a binomial model for the occurrence and a lognormal model for the 

intensity (both without random effects) using PROC GENMOD. These parameter estimates 

are used as starting values in estimating the separate occurrence and intensity models with 

uncorrelated random effects using SAS PROC NLMIXED. Finally, the parameter estimates 

from the two uncorrelated random effects models are used as starting values for the mixed-

distribution model with correlated random effects in a final PROC NLMIXED run. The 

starting value for the covariance of the random effects is calculated using the estimates of 

 and .  2 2
1 2 and σ σ 0.5ρ=

2iu

1 2ˆ ˆ and i i

( ) ( 2 2ij ij′− X

 
2.3 Model Checking 

The model assumes normality and constant variance of random effects, u , and the 

residuals of the intensity distribution. Standard regression diagnostics may be used to assess 

the goodness of fit of the model. Quantile-quantile plots can be constructed for u u , 

and for the residuals for the intensity variable, given by ln

1  and i

)2is u+β . If the 

normality assumption is not violated, the data will fall in a straight line. A plot of the 

residuals for the intensity distribution versus fitted values will indicate if the assumption of 

constant variance is violated. A nonrandom pattern indicates departure from this 

assumption. 
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2.4 Interpretation of Fixed-Effects Parameters 

The separate effects of the fixed-effect occurrence and intensity parameters, 1β  and 2β , 

have the same interpretations for occurrence and intensity as they would have if the two 

components of the model were fit separately (e.g., logistic and lognormal regression). If a 

variable is used in both the occurrence and intensity models, however, there may be interest 

in quantifying the overall effect of the variable on the total amount Y. This can be done as 

follows.  

Assume that Z  is a covariate in both the occurrence and intensity models (2) and (3), and 

that and  are vectors of the other occurrence and intensity covariates respectively. 

For simplicity we suppress the subscripts i  and 

1X 2X

j . Then from (2) and (3), 

( ) ( )
( )

1 1 1 1
1

1 1 1 1

exp
Pr 1|

1 exp
z u

R
z u

X
X

α
α

′ + +
= =

′+ + +
β

θ
β

  (9) 

and 

( )2

2 2 2 2 2 2( | ) exp eE S X z u σα′= + +θ β + .  (10) 

Then the ratio of mean amount of Y when 1Z z= +  to that when Z z=  is 

( )
( )

( )
( )

( )
( )

1

1 2

E | 1, Pr 1| 1, E | 1,
E | , Pr 1| , E | ,
Y Z z R Z z S Z z

Y Z z R Z z S Z z
2

   = + = = + = +   =    = = = =      

θ θ
θ θ

θ
θ

 (11)  

From (10) the second term in (11) is ( )2exp α . In general the first term in (11) depends on 
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1 1 1uX′ +β  as well as on α  and . However, some insight can be gained by substituting (9) 

into (11) and noting that the function 

exp(
1 exp(

and

exp(
1 exp(

+
+ +

+
+ +

)
exp(

)
exp(

k k
k k

k k
k k

1 a

exp

E( |
E( |
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X′
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1 z
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1
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Thus in (11), 

( ) ( )
2 1 1 1

1 2 1 1 1

exp( ) when  is large and positive1, )
when  is large and negative, )

uz
uz

X
Xα α

 ′ += + ≈ ′ += 

βθ
βθ

.  

When 1 1 1u+β  is large and positive,  so there are few zeros, , 

and the effect of 

Pr( 1) 1R= ≈ E( ) E( )Y S≈

Z  on Y  is mainly via the mean of the non-zero values. When 1 1 uX′ + 1β  is 

large and negative, the ratio of means in (11) is a combination of occurrence and intensity 

effects. The term 
( )
( )

Pr 1

1

θ

Pr 1| ,R Z z θ
 is the risk ratio for occurrence per one unit 

change in Z . When , as when P 1)=r 1 1X′ + 1uβ  is large and negative, this term is 

close to the odds ratio for occurrence per one unit change in Z , which is exp  as in the 

usual logistic regression interpretation. Special cases of all of these results hold if 

( )1α

Z  enters 

into only the occurrence model (  or only into the intensity model ( ) . )02 = 1 0α =

| 1,R Z z= = +
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In practice, neither of the limiting cases of (11) may apply. In order to determine the range 

of the effect of a common covariate Z  on Y , the ratio of the means in (11) can be 

computed for the minimum, maximum, and median values of Z , and for the minimum and 

maximum values of the other covariates. The limit  in (11) provides an 

upper (lower) limit for the combined effect of 

( ) ( )2exp eα α1 xp

Z on Y  when  is positive (negative). Note 

that these results also hold when no random effects are present and thus provide an 

interpretation of the combined effect of a variable in a mixed distribution regression model. 

1α

 
2.5 Interpretation of Random Effects 

The random effects in the correlated mixed-distribution model, u1i and u2i, account for 

unobserved heterogeneity among units. In the occurrence part of the model, the random 

intercept on the link (e.g., logit) scale, , allows some units to have a 

consistently low or high probability of a non-zero response. The variance of the random 

effect, , indicates the variability of the probability of a non-zero response among units 

with similar covariate patterns. The random intercept, β β , in the intensity part 

of the model, allows some units to have consistently low or high mean of non-zero values. 

If σ  is large it indicates that there is a great deal of heterogeneity of mean non-zero 

responses among units with similar covariate patterns. 

10 10 1i iuβ β= +

2
1σ

20 20 2i iu= +

2
2

1i 2iu

Allowing correlation of the random effects  and u  allows units with consistently high 

occurrence probability to have consistently high (low) mean of non-zero values when the 

correlation between u  and  , ρ , is positive (negative).  

1iu 2i
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1

3 Simulation results 

A simulation study was performed to study the performance of the parameter estimates 

from Section 2.2. Using a method adapted from Zeger and Karim15, data were simulated 

from the logistic-lognormal-normal mixed-distribution model with  

( )1 10 11 12 13ij j i i j ip t x x tβ β β β= + + + +θ u  

( )22 20 21 22 2log( | ) ,ij i j i i eS u N t x uβ β β σ+ + +∼ , 

and correlated random effects u  and u  as in (4). 1i 2i

One hundred datasets with m  units (clusters or subjects) of size were 

generated using each of the two sets of parameter values shown in Table 1. The number of 

quadrature points specified in NLMIXED was held to the maximum number determined 

adaptively, seven. The estimates from NLMIXED appear to be unbiased (Table 1). 

100= 7in =

 
4 Application 

The Medical Expenditure Panel Survey (MEPS) is a longitudinal survey conducted by the 

Agency for Health Care Policy and Research (AHCPR) and the National Center for Health 

Statistics (NCHS). MEPS data may be used to obtain estimates of health care use, medical 

expenditures, and insurance coverage in the United States. In the Household Component of 

the MEPS, data were collected on health care use and expenditures, demographic 

characteristics, medical conditions, health status, and insurance coverage on 22,601 persons 

in 10,596 households. Although the expenditure and use data are collected longitudinally, 
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they are aggregated by year, only data for 1996 were analyzed. However, due to the 

multiple subjects within households, these data exhibit clustering, and the techniques 

described in this paper are applicable with household as the unit of repeated measurement. 

Although the MEPS is a representative sample and weighted and unweighted frequencies 

are provided in order to provide data analysts the ability to make population-level 

estimates, the analysis presented in this paper was not weighted. 

For this analysis, the impact of age, sex, health rating, the presence of a medical condition, 

census region (Northeast, Midwest, South, West), the presence of physical limitations, and 

insurance status on total medical expenditures in 1996 were modeled.. The health rating 

was assessed on a scale of 1 to 5 with 1 corresponding to “Excellent” and 5 corresponding 

to “Poor”. Whether or not a subject had a medical condition was based on household-

reported medical conditions collected in 1996. A subject was considered to have a 

limitation if they were found to have any type of limitation with activities of daily living 

(ADLs: including bathing, dressing, and getting around the house), instrumental activities 

of daily living (IADLs: including using the telephone, paying bills, taking medications, 

preparing light meals, doing laundry, and going shopping), physical limitations (such as 

walking, climbing stairs, grasping objects, reaching overhead, lifting, bending or stooping, 

and standing for long periods of time), any limitation that impeded their work, housework, 

or school activities, or vision or hearing limitations. The presence or absence of any 

insurance (including coverage under CHAMPUS/CHAMPVA, Medicare, Medicaid or 

other public hospital/physician or private hospital/physician insurance) was reported for 

each month in 1996. The portion of the year that the respondent was insured was used as a 
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covariate in the analysis. There were from one to fourteen persons in a family; the median 

number of family members was three. Seven hundred forty-six respondents were excluded 

from the analysis due to missing data on the limitation, health rating variable, insurance 

status, region, age or sex. 

Both models with and without correlated random effects were fit using the MIXCORR 

macro and a backwards selection procedure. In all cases the model with correlated random 

effects was found to be better than the model with uncorrelated random effects (based on a 

likelihood ratio test and AIC). A model with all covariates was the best of the models 

considered. Parameter estimates from the models with uncorrelated and correlated random 

effects are given in Table 2. 

Checks of the goodness of fit of the model, as described in Section 2.3, were performed. 

The quantile-quantile plots for the random effects showed no indication of departure from a 

straight line. Plots of residuals versus fitted values for the lognormal intensity model did 

not show any indications of heteroscedasticity of variance. 

The separate and combined effects of the variables included in the model are presented in 

Table 3. In this table each column is referenced by a lower case letter. Recall that from (11) 

the ratio of the overall mean for a one unit change in a common covariate Z may be 

represented as follows: 
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( )

2 1

E( | 1) Pr( 0 | 1)
exp expE( | ) Pr( 0 | )
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( ) ( )

Y Z z R Z z
Y Z z R Z z

j h
k

i

α α
  = + = = +  =  = =  ↑ ↑
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g



= 

. (12) 

The variable listed in the first column of Table 3 is z in the equation. Because the values of 

the other variables in the model impact the ratio of probabilities (g), various scenarios for 

values of the other variables are given in columns (a) thru (f). In general, the “low” 

condition, in which the other covariates in the model are at their lowest value, is given on 

the first row for the variable, and the “high” condition, in which the other covariates in the 

model are at their highest value, is given on the following row. 

Presence of a medical condition was associated with increased mean medical expenditure in 

1996. The increase ranged from 3.6 times (for subjects with otherwise “high risk” covariate 

patterns) to 25.1 times (for subjects with otherwise “low risk” covariate patterns). 

Differences in this effect were due to differences in the effect of a medical condition on the 

probability of some medical expenditure. The mean medical expenditure for respondents 

with a physical limitation was from 1.8 to almost 3 times the mean of respondents without 

physical limitations. Having insurance for the entire year was associated with increased 

mean medical expenditures from 2.5 to 10.2 times that of persons who did not have 

insurance for the entire year, with the larger increase for patients with an otherwise low risk 

covariate pattern. A one unit increase in the health rating scale, which actually 

corresponded to a decline in health, increased the mean amount of health expenditures by 

1.3 to 1.6 times. The difference between a male subject and a similar female increased the 
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mean amount of expenditure from 1.3 to 2.2 times. Lastly, living in the Midwest increased 

the mean amount of expenditure from 1.2 to 1.9 times that of those living in the West. In 

none of these cases was there a uniform dominance of the occurrence effect over the 

intensity effect (or vice versa) on total expenditure. 

The significant random effects variance for the occurrence shows that after accounting for 

covariate differences among subjects, some families have a greater probability of seeking 

medical care than others. Similarly, the highly significant random effect variance for 

intensity indicates that after accounting for covariate differences, some families have 

consistently higher (or lower) expenditures when they do seek medical care than the norm. 

The positive correlation between the occurrence and intensity random effects indicates that 

after accounting for covariate differences, families with a greater tendency to seek medical 

care tended also to report a higher mean amount of positive expenditures. 

 
5 Discussion 

We have proposed a model for longitudinal or repeated measures data with clumping at 

zero, using a mixed-effects, mixed-distribution model. The model includes features of the 

cross-sectional statistical models of Lachenbruch1,2, the cross-sectional econometric models 

of Heckman8, Duan et al.3, and Manning et al.6, and the time series model of Grunwald and 

Jones5. In addition, by including correlated random errors, the occurrence and intensity 

parts of the model are linked. An interpretation of fixed-effects parameters was given, 

which also applies to mixed-distribution models for cross-sectional data. 
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We have shown how the proposed model may be estimated using standard software for 

non-linear and generalized linear mixed models such as SAS PROC NLMIXED. 

Simulations indicate that this method of estimation gives unbiased results for both fixed 

and random effects. We chose this method due to its good performance on simulation 

studies, and because it can be easily implemented in SAS. However, other methods of 

model fitting appropriate for GLMMs and nonlinear mixed-effects models13 potentially 

could be used to fit our model, including penalized quasi-likelihood12 or a Monte Carlo 

method within a Bayesian framework15. 

We used the approach to model the association between several covariates including 

demographic characteristics, insurance coverage, and health status on health care 

expenditures of subjects, using random effects to account for clustering of subjects into 

families. We noted strong fixed effects of most covariates on total amount of expenditure, 

through both the probability of non-zero expenditure and the mean of non-zero 

expenditures. We also noted strong random effects due to clustering of subjects within 

families. Further, adjusting for covariates, there was a tendency for subjects in families that 

had a higher probability of some health care expenditure to also have higher mean non-zero 

expenditure. 

The model proposed in this paper is appropriate for data with true zeroes. Although this 

method may appear to be applicable to the case where data are left censored or missing, a 

zero in these cases is not a real zero and should not be treated as such when calculating the 

mean amount. 
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One byproduct of our work is a method for interpreting effects of covariates. Estimation of 

the mean amount, including the probability of zeros, is in our view one of the main reasons 

for developing models for the combined response when zeros are included. Totals, such as 

total expenditure for a group over a period of time including the fact that some subjects will 

have no expenditures, can be estimated from these means. The method we propose gives 

information about the effect of a covariate on this mean amount and how that effect arises 

as a combination of the covariate’s effect on occurrence probability and on mean non-zero 

amount. The methods we propose are also applicable in the cross-sectional case. 

Many modifications and extensions of our methods are possible. Some types of data with 

clumping at zero may exhibit serial correlation, particularly if repeated measurements are 

made longitudinally. One possible extension of the model described in this paper is to a 

transition model or an autoregressive error structure to account for the type of 

autoregressive pattern that longitudinal data might exhibit. Another direction for extension 

would be toward the Heckman8 econometric model, which uses correlated random errors to 

allow the probability of occurrence and the mean intensity to be related in a cross-sectional 

model. We have adapted that approach to include correlated random unit effects, our main 

interest. Our model could be modified to include correlated within-subject random 

components as well. Such a model could again be estimated using standard methods for 

GLMMs and SAS PROC NLMIXED. Further extensions might include both a transition 

component and a random effect. Other extensions of the correlation structure, such as a 

stochastic parameter model including random slopes as well as random intercepts, would be 

possible as well. However, as the correlation structures become more complex and 
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additional parameters are added to the model, the model becomes less parsimonious and 

more difficult to fit. 

In this paper we have assumed that the non-zero amounts follow a lognormal distribution, 

as in the two-part models of Duan et al3. This distribution is appropriate for skewed, 

positive, continuous data and is frequently used for analysis of cost data. The gamma 

distribution would be an alternative choice for the intensity distribution, as in Grunwald 

and Jones5 and Hyndman and Grunwald18. The Weibull distribution could also be chosen. 

All of these are distributions on ( and can be accommodated by the model. Because all 

of these distributions are capable of modeling a variety of positively skewed shapes, the 

exact form assumed for the errors would not be expected to have a substantial effect on the 

estimated model parameters or inferences. However, if quantiles of the non-zero amounts 

are to be estimated (as in Grunwald and Jones

)0,∞

0.ir =

5), more care is needed to specify and check 

the form of the error distribution. A non-parametric density estimate19 could also be 

considered for estimating the shape of the error distribution. This approach potentially 

could provide better estimation of quantiles, although sparse data in the tails of the highly 

skewed distributions may cause difficulties. We are not aware of any applications of non-

parametric density estimation to data with clumping. Some care would be needed so that 

the estimates were applied only to the non-zero data rather than smoothing across the zeros 

as well. It is unclear how multiple covariates and random effects could be included. 

 In our model, an intensity model appropriate for y  was chosen so that it may be 

assumed that zeros only arise when  Otherwise, it is unknown whether the zeros 

0i >
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arise from the distribution for the occurrence component of the model, or from the intensity 

component of the model. An example of a mixture of distributions that contains both type 

of zeros is a Binomial-Poisson mixture. Lambert20 has proposed zero-inflated Poisson (ZIP) 

regression for handling data that arise from this mixture of distributions. Dunson and 

Haseman21 extended ZIP regression to a transition model for longitudinal data with an 

application to carcinogenicity in animal studies. Hall22 adapted Lambert’s methodology to 

an upper-bounded count situation by using a zero-inflated binomial model. He also 

incorporated random effects into the ZIP regression model to accommodate repeated 

measures data. Our model was developed for the case where the non-zero data arise from a 

continuous distribution. The Poisson would not be an appropriate distribution for the 

intensity variable for the medical expenditure data described in this paper, as these data are 

not independent counts.  

In the econometric literature there has been an increased interest in semi-parametric 

approaches to fitting data with clumping at zero16,17. In addition, Hyndman and Grunwald18 

have developed a generalized additive mixed-distribution model with a first-order Markov 

structure for time series data. Another extension to the model described in this paper could 

involve a semi-parametric modeling approach. 

Because the correlated mixed-distribution model is a nonlinear model that incorporates the 

models and methods of GLMMs, as the methodology advances in the area of nonlinear 

models and GLMMs, especially with regard to model fitting and diagnostics, the 

methodology of the correlated mixed-distribution model will be advanced as well. 



Analysis of Repeated Measures Data with Clumping at Zero 
Page 24 

 

Acknowledgments 

This research was partially supported by the National Institute of General Medical Studies, 

Grant GM38519 (RHJ).  The authors would also like to acknowledge Drs. Becki Bucher 

Bartelson, David Young, and Gary Zerbe for their guidance with this research. 



Analysis of Repeated Measures Data with Clumping at Zero 
Page 25 

 
References 
 
 
1. Lachenbruch P. Analysis of data with clumping at zero. Biometrische Zeitschrift 1976; 

18: 351-356. 
 
2. Lachenbruch P. Utility of regression analysis in epidemiologic studies of the elderly. In: 

Wallace R, Woolson R, eds. The Epidemiologic Study of the Elderly. Oxford 
University Press, 1992. 

 
3. Duan N, Manning WG, Morris CN, Newhouse JP. A Comparison of Alternative Models 

for the Demand for Medical Care. The RAND Corporation, 1982. R-2754-HHS. 
 
4. Amemiya T. Advanced Econometrics. Cambridge, Massachusetts: Harvard University 

Press, 1985. 
 
5. Grunwald GK, Jones RH. Markov models for time series with mixed distribution. 

Environmetrics 2000; 11: 327-339. 
 
6. Manning W, Duan N, Rogers W. Monte carlo evidence on the choice between sample 

selection and two-part models. Journal of Econometrics 1987; 35: 59-82. 
 
7. Diggle PJ, Liang K-Y, Zeger SL. Analysis of Longitudinal Data. Oxford: Oxford 

University Press, 1994. 
 
8. Heckman JJ. The common structure of statistical models of truncation, sample selection, 

and limited dependent variables and a simple estimator of such models. Annals of 
Economic and Social Measurement 1976; 5: 475-492. 

 
9. Robertson JS, Bolinger K, Glasser LM, Sloane NJ, Gross R. Chapter 1. In: Zwillinger D, 

ed. CRC Standard Mathematical Tables and Formulae. Boca Raton: CRC Press; 
1996: 71. 

 
10. Aitchinson J. On the distribution of a positive random variable having a discrete 

probability mass at the origin. Journal of the American Statistical Association 1955; 
50: 901-908. 

 
11. Wolfinger R, O’Connell M. Generalized linear models. J. Statist. Comput. Simul 1993; 

48: 233-243. 
 
12. Breslow N, Clayton D. Approximate inference in generalized linear models. Journal of 

the American Statistical Association 1993; 88: 9-25. 
 
13. Pinheiro JC, Bates DM. Approximations to the log-likelihood function in the nonlinear 

mixed-effects model. Journal of Computational and Graphical Statistics 1995; 4: 
12-35. 



Analysis of Repeated Measures Data with Clumping at Zero 
Page 26 

 
 
14. McCullagh P, Nelder J. Generalized linear models (2nd ed). London: Chapman & Hall, 

1989. 
 
15. Zeger SL, Karim MR. Generalized linear models with random effects. Journal of the 

American Statsitical Association 1991; 86: 79-86. 
 
16. Maddala G. Limited dependent variable models using panel data. Journal of Human 

Resources 1987; 22: 307-338. 
 
17. Vella F. Estimating models with sample selection bias. Journal of Human Resources 

1998; 33: 127-169. 
 
18. Hyndman RJ, Grunwald GK. Generalized additive modeling of mixed distribution 

markov models with application to Melbourne’s rainfall. Australian and New 
Zealand Journal of Statistics 2000; 42: 145-158. 

19. Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman 
and Hall, London. 

 
20. Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in 

manufacturing. Technometrics 34: 1-14. 

21. Dunson, D., and Haseman, J. (1999). Modeling tumor onset and multiplicity using 
transition models with latent variables. Biometrics 55: 965-970. 

22. Hall, D. (2000). Zero-inflated Poisson and binomial regression with random effects:  A 
case study. Biometrics 56: 1030-1039. 

 

 



Analysis of Repeated Measures Data with Clumping at Zero 
Page 27 

 
 

Table 1. Simulation results for the correlated mixed-distribution model using m=100 
simulated datasets from the model given in Section 2.3 with each of the two sets of true 
parameter values. 

True Value Mean of 100 

estimates 

True Value Mean of 100 

estimates 

β10 2.50 2.51 β10 2.50 2.58 

β11 0.10 0.10 β11 0.10 0.09 

β12 -1.00 -1.04 β12 -1.00 -1.13 

β13 0.05 0.05  β13 0.05 0.06 

2
1σ  1.00 0.97 2

1σ  10.00 9.98 

β20 4.00 4.00 β20 4.00 3.98 

β21 0.50 0.50 β21 0.50 0.50 

β22 1.50 1.49 β22 1.50 1.39 

2
2σ  1.44 1.41 2

2σ  14.40 14.33 

2
eσ  1.00 1.00 2

eσ  1.00 1.01 

1 2ρσ σ  0.60 0.58 1 2ρσ σ  6.00 6.15 
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Table 2. Parameter Estimates and Model Comparisons for final model fit to MEPS data. 

 ———UNCORRELATED——— ————CORRELATED–——— 

Parameter Estimate (S.E.) Prob>|t| Estimate(S.E) Prob>|t| 

Occurrence (Logistic) 

Intercept -2.8292(0.1129) <0.0001 -2.8131(0.1129) <0.0001 

Medical Condition (N=0/Y=1) 3.0342(0.0724) <0.0001 2.9792(0.0717) <0.0001 

Limitations (N=0/Y=1) 0.5574(0.0894) <0.0001 0.5498(0.0897) <0.0001 

Portion of Year Insured (0-1) 1.7152(0.0680) <0.0001 1.7262(0.0679) <0.0001 

Age (years) 0.0051(0.0014)  0.0003 0.0040(0.0014)  0.0043 

Health Rating (1-5) 0.1782(0.0292) <0.0001 0.2181(0.0296) <0.0001 

Sex (M=0/F=1) 0.6122(0.0509) <0.0001 0.6318(0.0510) <0.0001 

Region 1 (Northeast) 0.5173(0.0881) <0.0001 0.5184(0.0884) <0.0001 

Region 2 (Midwest) 0.5547(0.0867) <0.0001 0.5465(0.0869) <0.0001 

Region 3 (South) 0.1359(0.0724)  0.0606 0.1236(0.0726)  0.0886 
2
1σ  1.1502(0.1140) <0.0001 1.1852(0.1149) <0.0001 

Intensity (Lognormal) 

Intercept 3.0459(0.0619) <0.0001 2.8653(0.0641) <0.0001 

Medical Condition (N=0/Y=1) 1.0485(0.0473) <0.0001 1.1503(0.0482) <0.0001 

Limitations (N=0/Y=1) 0.5681(0.0299) <0.0001 0.5743(0.0299) <0.0001 

Portion of Year Insured (0-1) 0.8702(0.0347) <0.0001 0.9047(0.0348) <0.0001 

Age (years) 0.0189(0.0005) <0.0001 0.0187(0.0005) <0.0001 

Health Rating (1-5) 0.2609(0.0111) <0.0001 0.2697(0.0112) <0.0001 

Sex (M=0/F=1) 0.2235(0.0206) <0.0001 0.2366(0.0206) <0.0001 

Region 1 (Northeast) 0.1188(0.0355)  0.0008 0.1237(0.0356)  0.0005 

Region 2 (Midwest) 0.1314(0.0341)  0.0001 0.1383(0.0342) <0.0001 

Region 3 (South) 0.0126(0.0313)  0.6878 0.0145(0.0313)  0.6435 
2
eσ  1.6959(0.0239) <0.0001 1.6960(0.0238) <0.0001 
2
2σ  0.2368(0.0190) <0.0001 0.2468(0.0192) <0.0001 

1 2ρσ σ  — — 0.3523(0.0347) <0.0001 

           (ρ =0.6514)  

Name Value  Value Diff in –2 ll 

AIC 293,107.6  293,002.0           

-2 ll 293,061.6  292,954.0     107.59 
(p<0.0001) 
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